
www.manaraa.com

Characterizing History Independent

Data Structures

Jason D. Hartline1, Edwin S. Hong1, Alexander E. Mohr1,
William R. Pentney1, and Emily C. Rocke1

Department of Computer Science, University of Washington, Seattle, WA 98195.
{hartline,edhong,amohr,bill,ecrocke}@cs.washington.edu

Abstract. We consider history independent data structures as proposed
for study by Teague and Naor [2]. In a history independent data struc-
ture, nothing can be learned from the representation of the data structure
except for what is available from the abstract data structure. We show
that for the most part, strong history independent data structures have
canonical representations. We also provide a natural less restrictive def-
inition of strong history independence and characterize how it restricts
allowable representations. We also give a general formula for creating dy-
namically resizing history independent data structures and give a related
impossibility result.

The full version of this extended abstract is available from:
http://www.cs.washington.edu/research/computation/theory-night/

papers/hist-indep.ps

1 Introduction

On April 16, 2000, the New York Times published an article regarding the CIA’s
role in the overthrow of the Iranian government in 1953. In addition to the arti-
cle, the Times’ website posted a CIA file from 1954 which detailed the actions of
various revolutionaries involved in the plot. The Times opted to black out many
of the names mentioned in the document; some of the people referred to were
still alive and residing in Iran and could have been put at risk for retribution.
The file was published as an Adobe PDF file that contained the original docu-
ment in its entirety and an overlay covering up parts of the document. Shortly
after releasing the document, some Internet users reverse engineered the over-
lay and made the original document available on the Web. In an environment
where information is valuable, private, incriminating, etc., data structures that
retain information about previous operations performed upon them can cause
considerable problems; the Times’ blunder represents a particularly grievous in-
stance of this. History independent data structures are designed not to reveal
any information beyond that necessarily provided by the contents of the data
structure.

The idea of maintaining a data structure so that no extraneous information is
available was first explicitly studied by Micciano [1]. This work studied “oblivious
trees” where no information about past operations could be deduced from the

www.manaraa.com

pointer structure of the nodes in the search tree. In [3], Snyder studied bounds
on the performance of search, insert and delete functions on uniquely represented
data structures, which employ a canonical representation for each possible state
of the data structure. More stringent history independence requirements were
studied by Naor and Teague in [2]. In their model, the entire memory representa-
tion of a history independent data structure, not just the pointer structure, must
not divulge information about previous states of the data structure. Following
[2] we consider two types of history independence: weak history independence, in
which we assume that a data structure will only be observed once; and strong
history independence, in which case the data structure may be observed multiple
times. A data structure is history independent if nothing can be learned from
the data structure’s memory representation during these observations except for
the current abstract state of the data structure.

In Section 3 we give a simple definition of strong history independence. In the
full version of this paper we show that this definition equivalent to that of [2].
Under this definition, any strong history independent implementation of a data
structure must satisfy a natural canonicality criterion (Section 4). For example,
a strongly history independent implementation of a hash table has the property
that up to randomness in the initialization of the hash table, e.g., the choice of
hash functions, the hash table’s representation in memory is deterministically
given by its contents. This answers an open question posed in [2] about the
necessity of canonical representations.

In Section 5 we consider a natural relaxation of strong history independence,
where non-canonical representations and randomness can be used. However, we
show that even under this less restrictive definition, there are still very stringent
limitations on using non-canonical representations.

Finally, in Section 6 we discuss the issue of creating dynamically resizing
history independent data structures. We give a general technique for dynami-
cally resizing weak history independent data structures in amortized constant
time against a non-oblivious adversary. We prove that no such technique ex-
ists for strongly history independent dynamically resizing data structures. This
result provides insight into the open problem of whether there is a complexity
separation between weak and strong history independence [2].

2 Preliminaries

The results presented in this paper apply to history independent data structures
in general. To this end we must have a general understanding of data structures.
An abstract data structure defines the set of operations for a data structure and
its semantics.

A data structure’s state is the current value or contents of the data structure
as specified by its abstract data structure. A data structure’s representation in
memory for any given state is the physical contents of memory that represent
that state. An implementation of a data structure gives a map from any valid
representation/operation pair to a new representation (and possible output).

www.manaraa.com

We assume that our abstract data structure is deterministic.1 That is, each
operation takes one state deterministically to another state. Define the state tran-
sition graph to be the directed graph induced on states (as vertices) of the data
structure by the operations (directed edges). It is useful to consider the following
trichotomy of state transition graphs according to standard graph properties:

– The graph may be acyclic (a DAG). This is the case if it is not possible
to return to a previously visited state. Examples are the union-find data
structure [4] and hash tables that do not support the delete operation.

– The graph may be strongly connected, i.e., all states are mutually reachable.
Hash tables (with delete operation), queues, stacks, etc. are all examples of
such data structures. We define these (below) as reversible data structures
because they do not support irreversible operations.

– Otherwise the graph is a combination of the above consisting of strongly
connected components that are interconnected acyclically.

Definition 1. A data structure is reversible if its state transition graph is strongly
connected.

Let A, B, and C represent states of the data structure (i.e., vertices in the
graph). Let X and Y represent sequences of operations on the data structure
(i.e., directed paths in the graph) with [Xk] being the sequence of operations
of X repeated k times and [X, Y] the sequence of operations consisting of the
operations of X followed by the operations in Y . We say that B is reachable from
A, notated A → B, if some non-empty sequence of operations takes state A to

state B. If X is such a sequence of operations, we say A
X
−→ B. If A is reachable

from B and B is reachable from A then A and B are mutually reachable, notated
A ⇋ B. This is synonymous with saying that states A and B are in the same

strongly connected component of the state transition graph. We say ⊘
X
−→ A if,

on data structure initialization, the sequence of operations X produces state A.
Note though that if A ⇋ B for some B, then A ⇋ A; though in general,

a state A is not necessarily mutually reachable with itself (E.g., if the state
transition graph is acyclic). We call a state not mutually reachable with itself a
transient state.

The data structures that we consider may use randomization in choosing
which representation to use for any given state. In the context of history inde-
pendent data structures, randomization over representations is useful both for
efficiency and for maintaining history independence.

Let a and b denote representations of states A and B respectively. It will be
convenient to view a state as the set of representations that represent that state,

thus a ∈ A. Let X be such that A
X
−→ B. Let Pr

[

a
X
−→ b

]

denote the probability

that, starting from representation a of A, the sequence X of operations on the
data structure yields representation b of B. We say b is reachable from a, denoted

1 Our results can be extended to randomized abstract data structures by noting that
they are equivalent to deterministic abstract data structures when the user picks
which operation to apply randomly.

www.manaraa.com

a→ b, if there is some sequence of operations X such that Pr
[

a
X
−→ b

]

> 0. We

say a ⇋ b if (a→ b)∧ (b→ a). We say representation a of state A is reachable
if it is reachable from data structure startup, i.e., ⊘ → a. We henceforth only
consider representations that are reachable. We say ⊘ → a if there exists X such

that (⊘
X
−→ A) ∧Pr

[

⊘
X
−→ a

]

> 0.

The representation of the data structure encapsulates everything known

about it. Therefore Pr
[

a
X
−→ b

]

must be independent of any states or repre-

sentations of the data structure prior to entering representation a of state A.
Thus, a data structure behaves like a Markov chain on its representations except
that the transition probabilities are based on which operation is performed. This
is formalized in Note 1.

Note 1. If A
X
−→ B and B

Y
−→ C then,

Pr
[

a
X
−→ b

Y
−→ c

]

= Pr
[

a
X
−→ b

]

·Pr
[

b
Y
−→ c

]

.

3 History independence

The goal of history independence is to prevent information from being leaked
though the representation of a data structure in the case that it is observed by
an outside party. As such, the requirements for history independence depend on
the nature of the potential observations. Following [2] we define weak history
independence for the case where the data structure is only observed once, e.g.,
when a laptop is lost. Alternatively, a strong history independent data structure
allows for multiple observations of the data structure without giving any infor-
mation about the operations between the observations beyond that implied by
the states observed.

Definition 2 (Weak History Independence). A data structure implemen-
tation is weakly history independent if, for any two sequences of operations X
and Y that take the data structure from initialization to state A, the distribution
over memory after X is performed is identical to the distribution after Y . That
is:

(⊘
X
−→ A) ∧ (⊘

Y
−→ A) =⇒ ∀ a ∈ A, Pr

[

⊘
X
−→ a

]

= Pr
[

⊘
Y
−→ a

]

.

Definition 3 (Strong History Independence (SHI)). A data structure im-
plementation is strongly history independent if, for any two (possibly empty) se-
quences of operations X and Y that take a structure in state A to state B, the
distribution over representations of B after X is performed on a representation
a is identical to the distribution after Y is performed on a. That is:

(A
X
−→ B)∧ (A

Y
−→ B) =⇒ ∀ a ∈ A, ∀ b ∈ B, Pr

[

a
X
−→ b

]

= Pr
[

a
Y
−→ b

]

.

Here, A may be the null (pre-initialization) state, ⊘, in which case a is the
empty representation, ⊘. Thus, strongly history independent data structures are

www.manaraa.com

a subset of weakly history independent data structures. Although this definition
differs from the arguably more complex one given by Naor and Teague [2], we
show in the full paper that they are in fact equivalent.

For strong history independent data structures, because the Pr
[

a
X
−→ b

]

does not depend on the path X , we can introduce the notation Pr[a→ b] to

mean Pr
[

a
X
−→ b

]

for any X taking A
X
−→ B. We now discuss some useful

properties of “⇋” and “→” on history independent data structures.

Transitivity of “→” and “⇋”: Under SHI, (a→ b) ∧ (b→ c) =⇒ (a→ c),
and similarly, (a ⇋ b) ∧ (b ⇋ c) =⇒ (a ⇋ c).

Reflexivity: a ⇋ a if and only if A ⇋ A.
Symmetry of “→”: Under SHI, for states A and B with A ⇋ B, a→ b =⇒

b→ a.

Transitivity follows immediately from the definition of reachable. See the full
version of the paper for the proof of reflexivity and symmetry.

4 Canonical representations and SHI

Note that if a data structure has canonical representations for each state, it
is necessarily SHI. An open question from [2] is whether the converse is true:
does strong history independence necessarily imply that the data structure has
canonical representations? In this section we answer the question by showing
that up to randomization on transition between strongly connected components
of the state transition graph the representations are canonical. For example, any
strongly history independent implementation of a reversible data structure, e.g.,
a hash table, has canonical representations up to initial randomness, e.g., choice
of hash functions.

Lemma 1. Under SHI, if a and a′ are both representations of state A with
a→ a′, then a = a′.

Proof. We show the contrapositive. Let E be the empty sequence of operations.

For a 6= a′, we have Pr
[

a
E
−→ a′

]

= 0 because the data structure is not allowed

to change unless an operation is performed. Thus, by SHI, Pr[a→ a′] = 0 so
a 6→ a′. ⊓⊔

Intuitively, this requires A to have a canonical representation after it is visited
for the first time. Before the first visit it may have a distribution of possible
representations. Now we extend the requirement for a canonical representation
of A to the point where the data structure first hits a state reachable from A.
From Lemma 1 by transitivity of “→” we have:

Corollary 1. Under SHI, let a and b be representations of states A and B such
that a ⇋ b. For all representations b′ of B, a ⇋ b′ iff b′ = b.

Corollary 1 shows that after reaching the first state of a strongly connected
component of the state transition graph, there is a chosen canonical representa-
tion for every other state in the component. This is a complete answer to the

www.manaraa.com

question of whether canonical representations are necessary for strong history
independence. In particular we have the following specification of the corollary:

Theorem 1. For a reversible data structure to be SHI, a canonical representa-
tion for each state must be determined during the data structure’s initialization.

Again, examples of reversible data structures - ones in which all states are
mutually reachable - are hash tables (that include the delete operation), queues,
stacks, etc.

5 Less restricted SHI

The definition of strong history independence above is highly restrictive, requir-
ing, as just seen, canonical representations of states (after some initial random
choices) to qualify. As evident by the proof of Lemma 1, a key contributor to its
restrictiveness is that we require that the observer not be able to distinguish a
nonempty sequence of operations from an empty one. A natural question would
be whether anything can be gained by relaxing this requirement. In the this
section, we discuss a relaxation of strong history independence which allows
the empty sequence to be distinguished from any other sequence of operations.
We show that while this does allow for randomness over representations, the
randomness allowed is still very restricted.

5.1 Definition

The following definition introduces a form of strong history independence more
permissive than the SHI definition.

Definition 4 (SHI
∗). A data structure implementation is strongly history in-

dependent if, for any two nonempty sequences of operations X and Y ,

(A
X
−→ B) ∧ (A

Y
−→ B) =⇒ ∀ a ∈ A, ∀ b ∈ B, Pr

[

a
X
−→ b

]

= Pr
[

a
Y
−→ b

]

.

SHI∗ permits an observer to distinguish an empty operation sequence from a
nonempty one without considering it to be a violation of history independence.
However, given that the operation sequence is nonempty, the observer may still
not glean information about how many operations were performed, or what the
operations were, besides what is inherent in the observed state of the abstract
data structure.

Arguably, SHI∗ is more practically useful than SHI. In essence, it is nearly
as strong as SHI if operations on the data structure are expected to be con-
siderably more frequent than observations of it. If the opposite were true, that
observations are more frequent than operations, then the situation approaches
constant surveillance, in which case the observer can simply record each state as
it occurs, making history independence useless.

In the remainder of this section we show that, despite this added flexibility,
there are still very strict requirements to which a SHI∗ data structure must ad-
here. For example, each state in a reversible SHI∗ data structure must have a

www.manaraa.com

“canonical distribution” over representations that is chosen during the initial-
ization process. Moreover, each operation on the data structure must result in
the representation being explicitly resampled from the state’s canonical distri-
bution. As an example, this precludes a hash table implementation from using
a randomized method for resolving conflicts, as all conflicts would have to be
remembered and re-resolved after every operation.

5.2 Canonical Representation Distributions

Unlike in the case of SHI, under SHI∗ a single state A may have distinct repre-
sentations a and a′ with a ⇋ a′ (contrast with Lemma 1).

Lemma 2. Under SHI∗, if a and a′ are both representations of state A with
a ⇋ a′, then for any representation b of state B with A → B, Pr[a→ b] =
Pr[a′ → b].

Proof. For the case that Pr[a→ b] = Pr[a′ → b] = 0 the lemma is true. Thus
assume without loss of generality that Pr[a→ b] > 0.

Since A ⇋ A, let W be any nonempty series of operations taking A
W
−→ A.

Let X be any nonempty series of operations taking A
X
−→ B. Consider the series

of operations QN = [(W)N , X] as performed on representation a. Let ai be a
random variable for the representation of state A after i performances of W and
let EN be the random event that ai = a′ for some i ∈ {1, . . . , N}. First, by
Note 1 and SHI∗, we have:

Pr
[

a
QN

−→ b | EN

]

= Pr[a′ → b] .

Now we show that limN→∞ Pr[EN] = 1. As observed in Note 1, once conditioned
on the representation at ai−1 the value of ai can not depend on anything but
ai−1. The series of representations {a1, a2, . . .} can thus be viewed as a first-order
Markov chain, where the states of the Markov chain are the representations of
state A reachable from a. Since all such representations are mutually reachable,
the Markov chain is irreducible.

We now employ the following basic property of irreducible Markov chains: In
the limit, if the expected number of visits to a state is unbounded then the proba-
bility that the state is visited approaches one. Let α = Pr[ai = a′] = Pr[a→ a′].

The expected number of occurrences of a′ after N steps is
∑N

i=1 Pr[ai = a′] =
αN . Since α is constant, this is unbounded as N increases. Thus, limN→∞ Pr[EN] =
1.

To complete the proof, by SHI∗,

Pr[a→ b] = Pr
[

a
QN

−→ b
]

= Pr
[

a
QN

−→ b | EN

]

Pr[EN] + Pr
[

a
QN

−→ b | ¬EN

]

(1−Pr[EN])

= Pr[a′ → b]Pr[EN] + Pr
[

a
QN

−→ b | ¬EN

]

(1−Pr[EN]) .

www.manaraa.com

In the limit as N increases, this quantity approaches Pr[a′ → b]. However, since
SHI∗ guarantees that it is constant as N changes, it must be that Pr[a→ b] =
Pr[a′ → b]. ⊓⊔

We now give the main theorem of this section which shows that, among other
things, reversible data structures have canonical distributions.

Theorem 2 (Canonical Distributions). Under strong history independence,
for any a,b, c with a ⇋ b and a→ c, Pr[a→ c] = Pr[b→ c].

Proof. First note that b ⇋ a→ c gives b→ c. By definition of “→”, there exists

at least one sequence of operations X with A
X
−→ B, and at least one Y with

B
Y
−→ C. For any such X and Y , a

[X,Y]
−→ c must go through some representation

b′ of B. By symmetry and transitivity of “⇋”, b′
⇋ b. Let 〈b〉 be the set of all

such b′. Thus,

Pr[a→ c] = Pr

[

a
[X,Y]
−→ c

]

=
∑

b′∈〈b〉

Pr
[

a
X
−→ b′ Y

−→ c
]

(By SHI∗)

=
∑

b′∈〈b〉

Pr
[

a
X
−→ b′

]

·Pr
[

b′ Y
−→ c

]

(Note 1)

=
∑

b′∈〈b〉

Pr
[

a
X
−→ b′

]

·Pr
[

b
Y
−→ c

]

(Lemma 2)

= Pr
[

b
Y
−→ c

]

·
∑

b′∈〈b〉

Pr
[

a
X
−→ b′

]

= Pr
[

b
Y
−→ c

]

· 1 = Pr[b→ c] .

⊓⊔

5.3 Order of Observations
In the full paper we continue these arguments by showing that the probability
distribution over representations for a set of observed states is independent of
the order in which the states are observed.2 Note, however, that the states must
be observed in an order consistent with the state transition graph. This is only
interesting for states that can be observed in a different order, i.e., states that
are mutually reachable (in the same connected component of the state transition
graph). As an example, for a and b such that A ⇋ B, the result implies that
Pr[⊘ → a→ b] = Pr[⊘ → b→ a] . This order independence implies that our
definition of strong history independence is in fact equivalent to that of [2]:

Definition 5 (NT-SHI and NT-SHI
∗). Let S1 and S2 be sequences of oper-

ations and let P1 = {i11, . . . , i
1
ℓ} and P2 = {i21, . . . , i

2
ℓ} be two lists of observation

points such that for all b ∈ {1, 2} and 1 ≤ j ≤ ℓ we have 1 ≤ ibj ≤ |Sb| and

the state following the i1j prefix of S1 and the i2j prefix of S2 are identical (for

2 Since SHI is more restrictive than SHI∗ it suffices to show this result for SHI∗.

www.manaraa.com

NT-SHI∗ we further require that for j 6= k that ibj 6= ibk). A data structure im-
plementation is strongly history independent if for any such sequences the joint
distribution over representations at the observation points of P1 and the corre-
sponding points of P2 are identical.3

Note that this definition allows the observations of the operations to be made
out of order, i.e., ibj > ibj+1. It is for this reason that the order invariance described
above is required to show that SHI and NT-SHI are equivalent.

6 Dynamic Resizing Data Structures

Many open addressing, i.e., array based, data structures use dynamic resizing
techniques of doubling or halving in size as they grow or shrink. The open ad-
dressing hash table or the array based queue are classic examples. This technique
combined with an amortized analysis yields data structures with amortized con-
stant time operations. A weakly history-independent hash table that dynamically
resizes is presented in [2]. The resizing scheme for the hash table generalizes to
convert any weakly history independent array-based data structure with con-
stant time operations and linear time resize into a dynamically resizing data
structure with amortized constant time per operation against an oblivious ad-
versary. Dynamic resizing for oblivious adversaries are discussed in more detail
in the full paper; in this section we will focus on the non-oblivious case.

A non-oblivious adversary is allowed access to the random bits flipped during
the running of the algorithm. Such an adversary can adapt a sequence of oper-
ations to the data structure as it is running in order to make it perform poorly.
For example, a hash table with randomized choice of hash functions does not
perform well against a non-oblivious adversary because the adversary, knowing
the choice of hash function, can choose to only insert elements that hash to the
same location.

We provide the following results on dynamically resizing history independent
data structures for non-oblivious adversaries:

– There is a general method for making any history independent data structure
with constant time operations and linear time resize into a weakly history
independent dynamically resizing data structure with amortized constant
time operations against a non-oblivious adversary.

– In contrast, there is no general method for making a strongly history in-
dependent array based data structure with a linear time resize operation
into a strongly history independent dynamically resizing data structure with
amortized constant time operations against a non-oblivious adversary.

We will tailor our description of these techniques to data structures with
explicitly defined size, capacity, and unit insertion and unit deletion operations
such as a hash table or an array based queue. Note that if there is no deletion
operation then the standard approach of doubling the capacity when the data

3 [2] does not define NT-SHI∗. We include it here as the natural relaxation to nonempty
sequences for comparison to SHI∗.

www.manaraa.com

structure is full, i.e. when the size is equal to the capacity, is efficient for non-
oblivious adversaries. If there is no insertion operation then the data structure
cannot grow and resizing is irrelevant. Let n denote the size of the data structure
and N the capacity.

Non-oblivious Adversary and Weak History Independence
We show how to make any fixed capacity history independent (weakly or strongly)
array-based data structure with a linear time resize operation into a constant
time amortized dynamically resizing weakly history independent data structure.
The principle behind this method is to maintain the invariant that N is random
variable that is uniform on {n, . . . , 2n− 1} while each insert or delete operation
only causes the data structure to resize with probability O(1/n).

We show below how to modify the insert function of any data structure to
maintain our invariant on N . The delete function is similar. See the full version
of the paper for details. Although N is a random variable the actual value of N
is known when working with the data structure.

Insert:

1. if N = n
– Resize data structure to size uniform on {n + 1, . . . , 2(n + 1)− 1}.

2. Otherwise (i.e., N > n)
– With probability 2/(n + 1) resize to N = 2n or N = 2n + 1, that is:

N ←

2n with probability 1/(n + 1)

2n + 1 with probability 1/(n + 1)

no change otherwise
3. Insert new item.

To show correctness we must show that given a call to insert with N uniform
on {n, . . . , 2n−1}, after insert the new capacity is uniform on {n+1, . . . , 2(n+1)−
1}. Clearly if step 1 occurs, the new capacity is uniform as desired. On the other
hand, if step 2 occurs the probability that N is unchanged is 1 − 2/(n + 1) =
(n − 1)/(n + 1). Since each of these n − 1 possible values for the old N is
equally likely, the probability that N is any one of them is 1/(n + 1). Clearly
Pr[N = 2n] = Pr[N = 2n + 1] = 1/(n + 1). Thus, the new N is uniformly
distributed over {n + 1, . . . , 2n + 1}.

We now show that the runtime of our insert (due to resizing) is expected con-
stant time. Assuming that a resize takes linear time, we need the probability of
resize of be O(1/n). Step 1, which always incurs a resize, occurs with probability
1/n. Step 2 incurs a resize with probability 2/(n+1). Thus the total probability
of resize is less than 3/n; since the resize operation is linear in n, the expected
time spent in resizing is O(1).

Non-oblivious Adversary and Strong History Independence
The technique employed in the previous section for making amortized dynami-
cally resizing weak history independent data structures fails when strong history

www.manaraa.com

independence is required. The technique described maintains a canonical distri-
bution of possible capacities for each n such that the probability is O(1/n) that
the capacity needs to be changed on an insert or delete (to maintain the correct
distribution on capacities). However, strongly history independent data struc-
tures cannot use such a technique because in states that are mutually reachable,
randomness over choice of representation must be completely regenerated during
each operation (Theorem 2).

We will show any strongly history independent data structure that has

– non-constant unamortized time resizes, and
– insert operations that can be undone in constant number of operations (i.e.,

delete),

has amortized non-constant time operations against a non-oblivious adversary.
Thus, there is no general technique for taking a constant time strongly history
data structure with inserts and deletes that has a linear time resize operation
for changing the capacity and making it resizable.

Consider, for example, the deque (double-ended queue) that supports opera-
tions inject and eject from the front of the deque and push and pop from the rear
of the deque. The insert operations inject and push have corresponding delete
operations eject and pop. A weakly history independent deque can be imple-
mented in an array in the same way a queue is implemented in an array. The
implementation of a strongly history independent deque is an open question, as
is the implementation of a queue. However, the result we now prove tells us that
either there is a strongly history independent deque with constant time resize or
there is no non-oblivious amortized constant time resizing strongly history inde-
pendent deque. This would provide a separation result between strong history
independence and weak history independence because weak history independent
amortized constant time resizing deques exist.

Theorem 3. Against a non-oblivious adversary, any strongly history indepen-
dent data structure that dynamically resizes (in non-constant unamortized time)
and has a sequence of undoable insert operations has non-constant amortized
resizes.

Proof. Let N ′ be a large value (we will take it in the limit for this result).
Consider any sequence of insert operations X1, . . . , XN ′ that we will perform in
order on the data structure, taking it from state S0 to state SN ′ . Let X̄i be the
operation(s) that undo(es) Xi.

Note that any data structure in which operations are undoable is reversible.
Thus, all states are mutually reachable, and once we initialize the data structure
and end up in some representation s0 of state S0, the reachable representations
of state Si are limited to those that are mutually reachable from s0, i.e., si

such that s0 ⇋ si. Furthermore, the probability that si is the representation
of state Si is exactly Pr[s0 → si] for either the case that we arrive in Si from
applying operation Xi from state Si−1 or from applying X̄i+1 from state Si+1.
Conditioned on s0 being the initial representation, let pN ′

i be the probability

www.manaraa.com

that the representation of state Si has capacity at least N ′ when performing Xi

from Si−1 or X̄i+1 from Si+1. By SHI∗, Pr[si−1 → si] = Pr[s0 → si]. Thus,

pN ′

i =
∑

s′∈〈si〉

{Pr[s0 → s′] : s′ has capacity at least N ′}.

All representations of state SN ′ have capacity at least N ′ because they have
size N ′. Thus, pN ′

N ′ = 1. Also, for N ′ suitably large, pN ′

0 = 0. As such, there

must be an k such that pN ′

k < 1/2 and pN ′

k+1 ≥ 1/2. The probability of resize
on transition from Sk to Sk−1, given initial representation s0, is thus at least
(1 − pN ′

k) × pN ′

k+1 ≥ 1/4. As this resize takes (non-amortized) linear time, the

sequence of operations given by Y = [X1, . . . , Xk, [Xk+1, X̄k+1]
k] takes at least

O(k) times the unamortized cost of resize for 3k operations, which yields an
amortized cost per operation on the same order as the cost of resize (which we
have assumed to be non-constant). ⊓⊔

7 Conclusions

We have shown the relationship between strong history independence and canon-
ical representations. In doing so we have proposed a new definition, SHI∗, of
strong history independence that allows non-empty sequences of operations to
be distinguished from empty ones. We leave as an open question whether there
is a complexity separation between the two, i.e., does there exist any interesting
data structure that has an efficient SHI∗ implementation but not SHI?

We have also given a general technique for dynamically resizing weak history
independent data structures. We have shown that for a standard efficiency met-
ric this is not possible for strong history independent data structures. We show
that efficient dynamic resizing under this metric is not possible for strong his-
tory independent data structures, but leave as an open question whether there
exist strong history independent data structures that would benefit from such a
resizing.

References
1. D. Micciancio. Oblivious data structures: Applications to cryptography. In Proc. of

29th ACM Symposium on Theory of Computing, pages 456–464, 1997.
2. M. Naor. and V. Teague. Anti-persistence: History Independent Data Structures.

In Proc. of 33nd Symposium Theory of Computing, May 2001.
3. L. Synder. On Uniquely Represented Data Structures. In Proc. of 28th Symposium

on Foundations of Computer Science, 1977.
4. Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal

of the ACM, 22:215–225, 1975.

